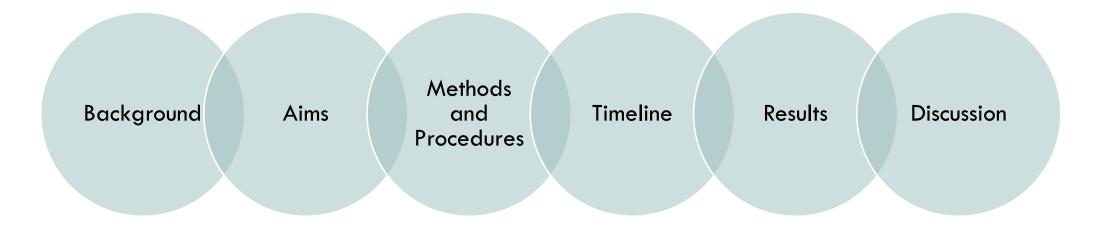
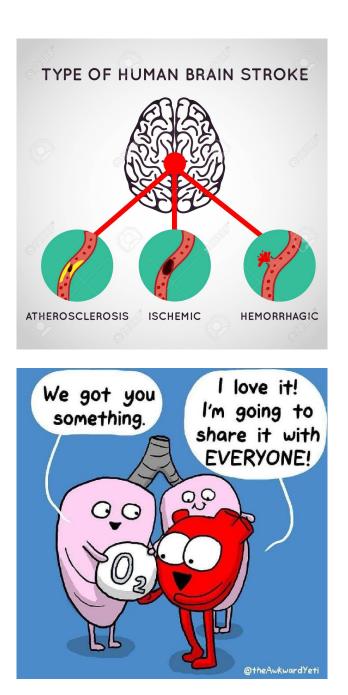


RESEARCH PRESENTATION


Cohort 3 Angeline Teo Yi Ling

A STUDY ON HEARING LOSS IN STROKE PATIENTS AND A NON-STROKE SINGAPORE ELDERLY POPULATION

Supervised by: Dr Jenny Loo Hooi Yin Dr Raymond Seet


OVERVIEW

BACKGROUND

- Stroke refers to a disruption of blood supply to the brain
- Second leading cause of death globally in 2015
- In Singapore, stroke is the fourth leading cause of death

• Stroke can affect all levels of the auditory system, leading to a hearing and/or processing impairment

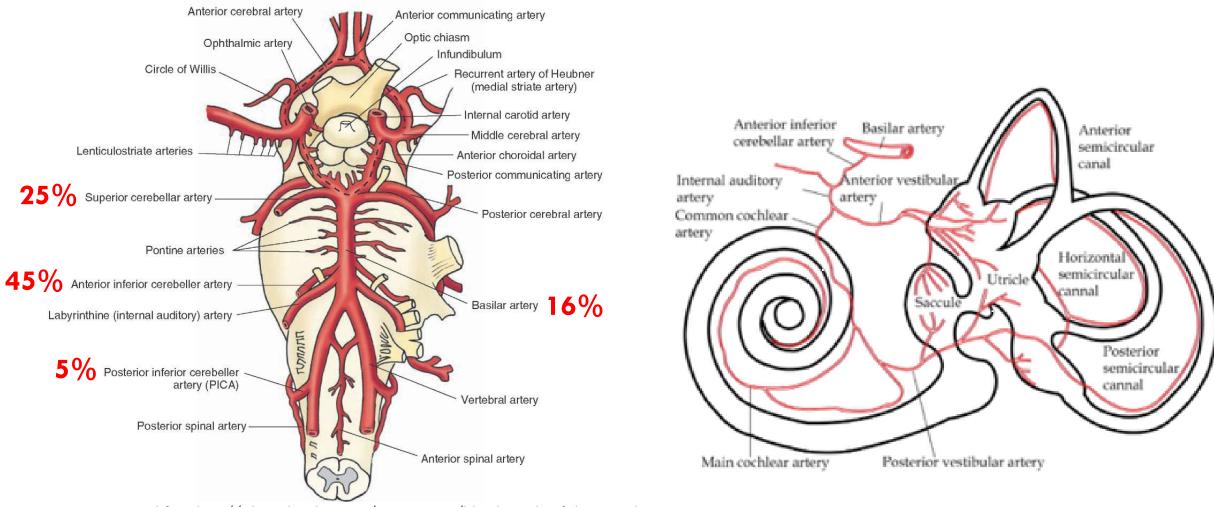


Figure retrieved from http://what-when-how.com/neuroscience/blood-supply-of-the-centralnervous-system-gross-anatomy-of-the-brain-part-1/

Figure retrieved from Kim & Lee, 2009

BLOOD SUPPLY TO THE INNER EAR

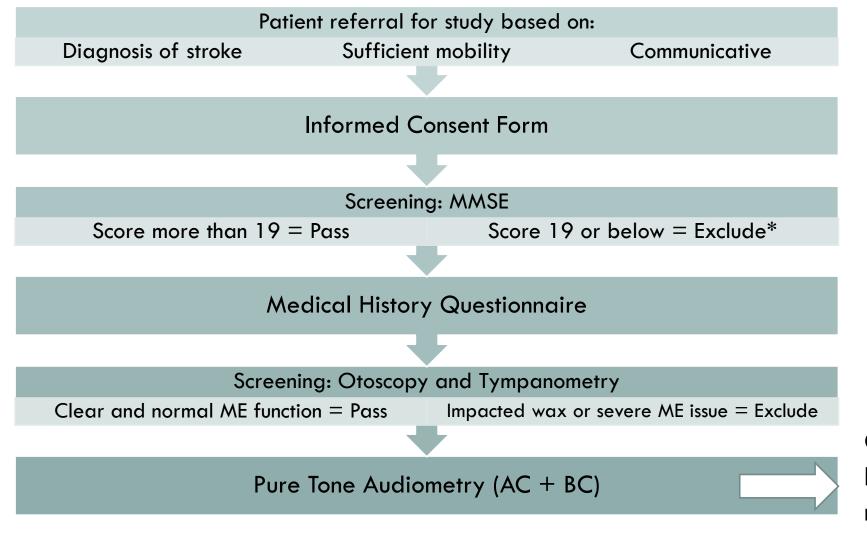
BACKGROUND

- Previous research has identified a strong association between stroke and hearing loss
- Reports on the increased risk and prevalence of hearing loss in stroke patients as compared to a general elderly population
- Audiovestibular loss as a warning sign for an impending stroke

SINGAPORE

- General lack of awareness on hearing loss in stroke patients
- No locally conducted studies measuring the hearing levels of stroke patients
- No clinical practice guidelines to identify hearing loss in stroke patients
- Rehabilitation emphasis mostly placed on motor and cognitive abilities
- Stroke patients undiagnosed for hearing loss can face more challenges regaining their functional ability post-stroke

AIMS

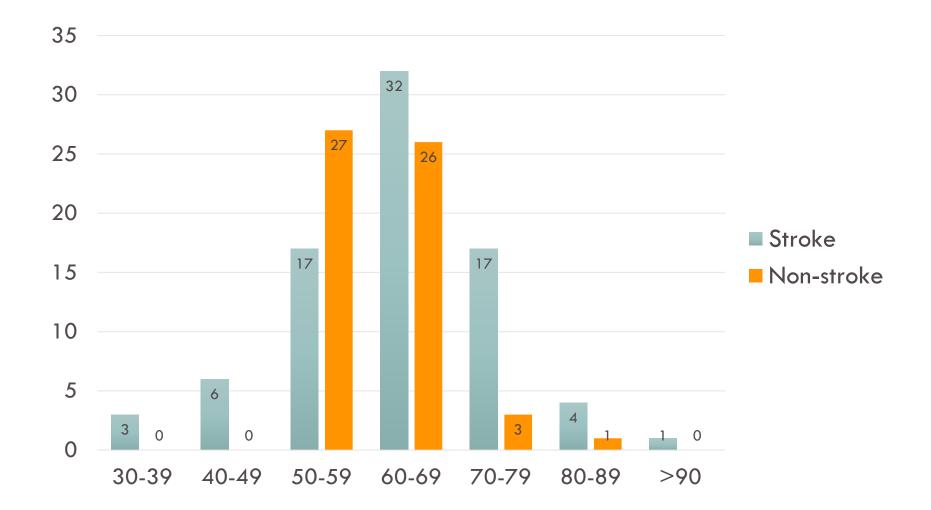

- 1. Measure the prevalence and severity of hearing loss in stroke patients and a non-stroke elderly population
- 2. Make age-adjusted comparisons of the prevalence and severity of hearing loss between stroke patients and a non-stroke control group
- 3. Raise the awareness of hearing impairment in stroke patients

METHODS AND PROCEDURES

- Recruitment of subjects using convenience sampling method and specific inclusion/exclusion criteria
- Stroke group: 80 stroke patients from NUH (mostly ward 57)
- Age range: 33 to 92 years
- **Control group**: 59 control subjects from the general public (Singaporean, no stroke, 50 to 85 years old, never worn hearing aids before)
 - Age range: 50 to 84 years

RECRUITMENT PROCESS

Offer referral to ENT if worse than mild hearing loss


DATA COLLECTION

- Medical history questionnaire (hearing hx, noise exposure hx, stroke hx)
- Stroke location, TOAST (stroke mechanism), NIHSS (stroke severity)
- Age, Gender, MMSE score
- Tympanometry bilaterally
- PTA bilaterally (Air conduction thresholds at 250Hz, 500Hz, 1kHz, 2kHz, 3kHz, 4kHz, 6kHz, 8kHz)

PROJECT TIMELINE

Feb - March				
 Choosing of project 	March - June	July - Feb		
○Discussing project with PI	Drafting of DSRB applications	DSRB applications Recruitment and testing of stroke patients from NUH	Jan - Mar Recruitment and testing of control subjects Data analysis	
			Writing of thesis	

RESULTS: AGE DISTRIBUTION

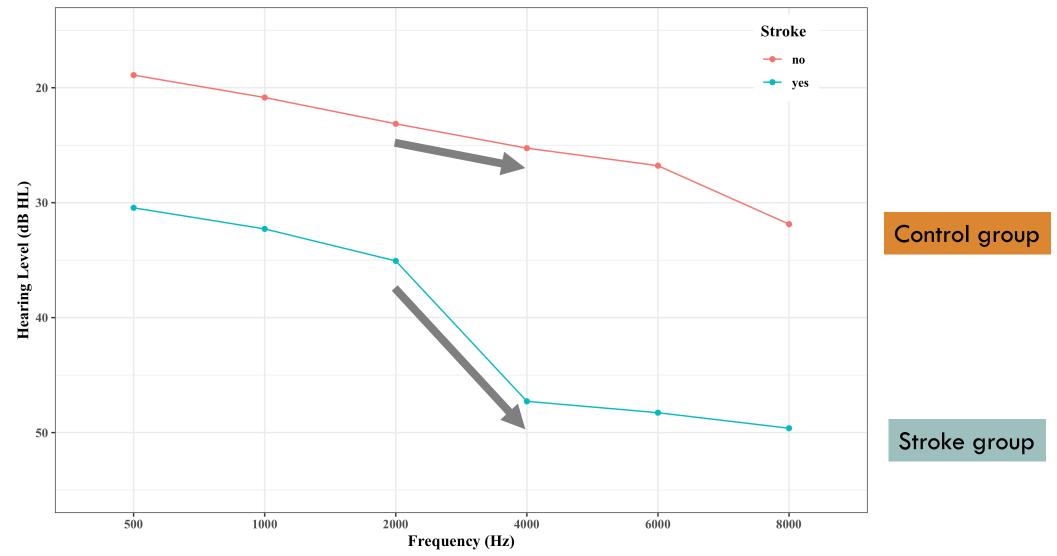
RESULTS: PREVALENCE OF HEARING LOSS

- Pure tone average: average of AC thresholds across the frequencies 500 Hz, 1 kHz,
- $2\ kHz$ and $4\ kHz$
- Degree of hearing loss based on WHO classification

Stroke group

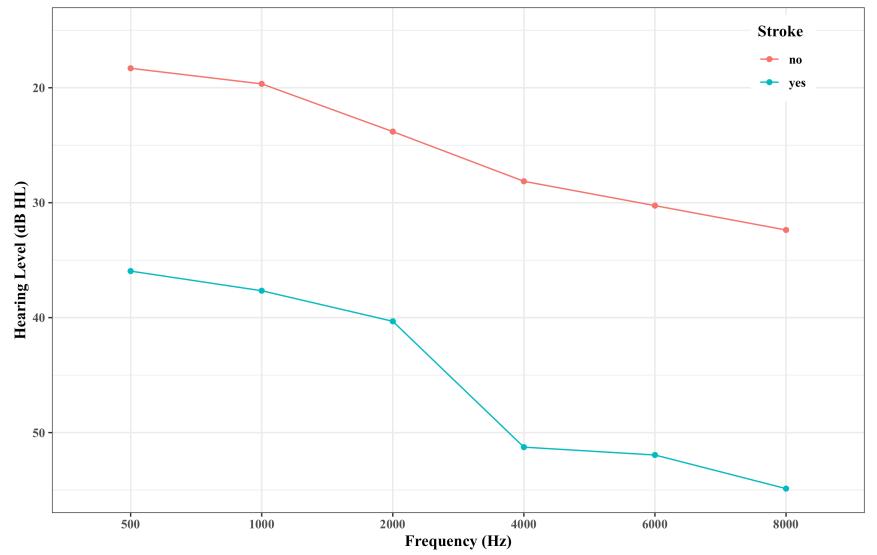
- 64% had a hearing loss (51/80 subjects)
- 25% categorized as a disabling hearing loss

Control group


• **24%** had a hearing loss (14/59

subjects)

RESULTS: PREVALENCE OF HEARING LOSS


Degree of hearing loss	Stroke group, n (%)	Control group, n (%)
Normal hearing (≤ 25 dB HL)	29 (36%)	45 (76%)
Mild hearing loss (26-40 dB HL)	32 (40%)	14 (24%)
Moderate hearing loss (41-55 dB HL)	12 (15%)	0
Moderately-severe hearing loss (56-70 dB HL)	6 (8%)	0
Severe hearing loss (71-90 dB HL)	1 (1%)	0
Profound hearing loss (> 90dB HL)	0	0

Right ear: Age-adjusted plots comparing the weighted average hearing threshold (dB HL) across frequencies (Hz) between the stroke (blue) and control group (red)

Right ear

Left ear: Age-adjusted plots comparing the weighted average hearing threshold (dB HL) across frequencies (Hz) between the stroke (blue) and control group (red)

Left ear

RESULTS: COMPARING HEARING THRESHOLDS

- 1. Difference in average pure tone hearing threshold between the stroke and control group was significant even after adjusting for age (both ears)
- 2. Difference in slope of hearing loss between the stroke and control group was significant even after adjusting for age (both ears)
- Slope of hearing loss = difference between 2 kHz and 4 kHz hearing threshold
- 3. Chi square test indicated **significant association between hypertension and hearing loss** in the stroke group (p-value=0.01)

RESULTS: TOAST CLASSIFICATION AND HEARING LOSS

TOAST classification has five categories denoting five subtypes of ischemic stroke:

- 1) Large artery disease
- 2) Cardio embolism
- 3) Small artery disease
- 4) Stroke of other determined aetiology
- 5) Stroke of undetermined aetiology
- Investigated for any trends between stroke mechanism and lateralization with side of poorer hearing (asymmetric hearing loss if >15 dB HL)

RESULTS: TOAST CLASSIFICATION AND HEARING LOSS

	Hearing Loss			
TOAST	Asymmetric	Symmetrical	Normal	
	al Hearing	Hearing	Hearing,	Total
	Loss, n (%)	Loss, n (%)	n (%)	(n=78)
1	3	17	4	24
1	(12.5%)	(16.7%)	(16.7%)	24
2	5	9	1	15
	(33%)	(60%)	(7%)	15
3	3	13	3	19
	(15.8%)	(87%)	(15.8%)	19
4		1		1
	0	(100%)	0	1
5	2	16	1	10
	(10.5%)	(84.2%)	(5%)	19

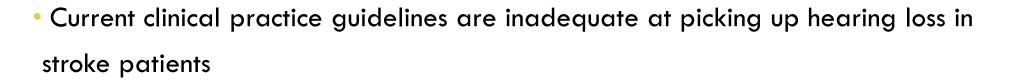
In 4 out of 5 (TOAST 2) stroke patients with an asymmetric hearing loss, the side of hearing loss was contralateral to the side of stroke

RESULTS: AUDITORY MANAGEMENT

- Stroke patients with a hearing loss greater than a mild degree in at least one ear were offered an ENT referral
- 6 out of 19 subjects (31%) agreed for an ENT referral
- 6 stroke patients were already under the care of an ENT for other reasons
- 4 stroke patients had already been fitted with a hearing aid (5%)

DISCUSSION

• Co-occurrence of stroke and hearing loss has been well studies showing a strong association between the two conditions


 Multiple studies have reported a higher prevalence of hearing loss in stroke patients as compared to a general elderly population

• Prevalence of hearing loss reported in stroke patients is well corroborated by other similarly conducted studies done in US, Australia and Malaysia

DISCUSSION

- Results suggest that stroke patients are more susceptible to hearing loss especially in the high frequencies as compared to a general elderly population
- Possibly attributed to strong involvement between the vascular and auditory system
- 2. Stroke patients with hypertension more prone to hearing loss due to the additive effect on presbycusis
- 3. Possible hypothesis of contralateral involvement of CNS during a cardioembolic stroke

CLINICAL IMPLICATIONS

 Large proportion of stroke patients undiagnosed for hearing loss and not receiving appropriate auditory management

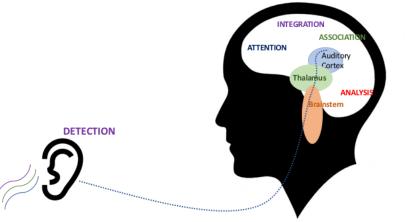
- Stroke coupled with a hearing loss can present more challenges during rehabilitation
 - More frequent communication breakdowns, inability to communicate their healthcare needs, poorer functional ability post-stroke

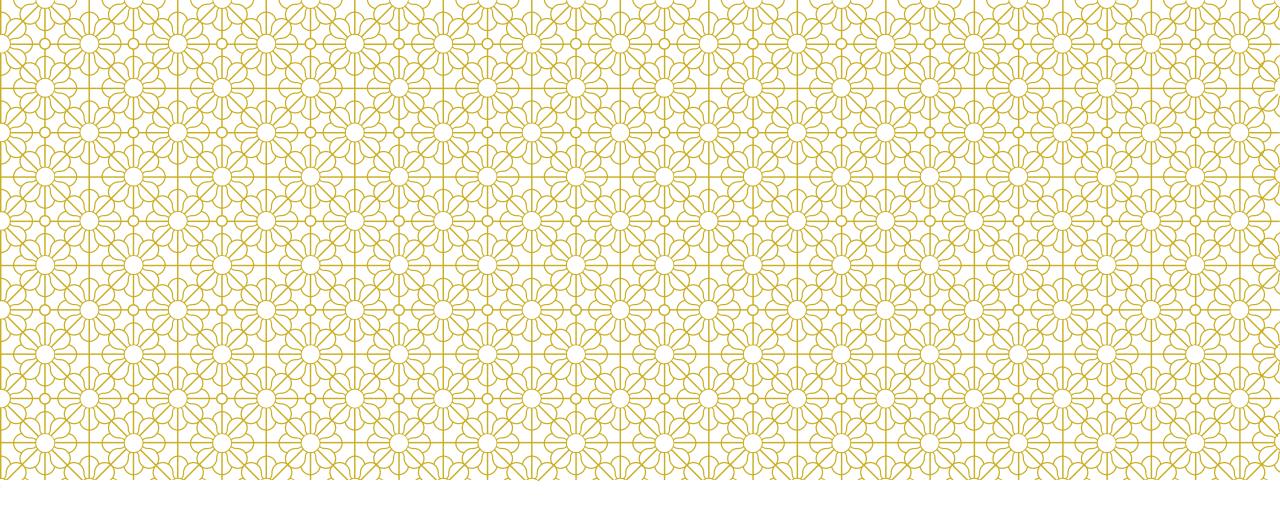
CLINICAL IMPLICATIONS

 Low acceptance of ENT referral suggest low prioritization of hearing health among elderly population

• Lack of awareness on significant benefits of auditory intervention

LIMITATIONS


- Absence of audiometric findings prior to stroke
- More likely to recruit subjects who were healthy, communicative, mobile and compliant
- PTA only sensitive to peripheral hearing, and unable to rule out other more subtler auditory dysfunctions e.g. CAPD
- Challenges of CAPD testing in a local elderly population


FUTURE WORK

Longitudinal cohort study to monitor hearing levels of subjects before and after

the incidence of stroke

- Investigate the mechanism of stroke and hearing loss
- Investigate relationship between stroke and CAPD
- Measure the risk of stroke in a population with sudden SNHL

THANK YOU FOR YOUR ATTENTION

REFERENCES

World Health Organization. (2017, May). WHO | Cardiovascular diseases (CVDs). Retrieved 22 April 2018, from http://www.who.int/mediacentre/factsheets/fs317/en/

Formby, C., Phillips, D. E., & Thomas, R. G. (1987). Hearing loss among stroke patients. Ear and Hearing, 8(6), 326332.

- Kuo, C.-L., Shiao, A.-S., Wang, S.-J., Chang, W.-P., & Lin, Y.-Y. (2016). Risk of sudden sensorineural hearing loss in stroke patients. Medicine, 95(36). <u>https://doi.org/10.1097/MD.00000000004841</u>
- Lee, Hyung. (2012). Audiovestibular loss in anterior inferior cerebellar artery territory infarction: a window to early detection? Journal of the Neurological Sciences, 313(1–2), 153–159. <u>https://doi.org/10.1016/j.jns.2011.08.039</u>

National Registry of Diseases Office. (2018). Singapore Stroke Registry Annual Report 2015., 28.

- O'Halloran, R., Worrall, L. E., & Hickson, L. (2009). The number of patients with communication related impairments in acute hospital stroke units. International Journal of Speech-Language Pathology, 11(6), 438–449. https://doi.org/10.3109/17549500902741363
- Tinga, A. M., Visser-Meily, J. M. A., van der Smagt, M. J., Van der Stigchel, S., van Ee, R., & Nijboer, T. C. W. (2016). Multisensory Stimulation to Improve Low- and Higher-Level Sensory Deficits after Stroke: A Systematic Review. Neuropsychology Review, 26(1), 73–91. <u>https://doi.org/10.1007/s11065-015-9301-1</u>
- Ciorba, A., Bianchini, C., Pelucchi, S., & Pastore, A. (2012). The impact of hearing loss on the quality of life of elderly adults. Clinical Interventions in Aging, 7, 159–163. <u>https://doi.org/10.2147/CIA.S26059</u>